Question	Answer	Mark
	$\mathbf{H} = \mathbf{H} = \frac{2}{2}$	
I(a)	Use of $E_k = eV$ and $E_k = p^2/2m$ (1)	
	Use of $\lambda = \frac{n}{n}$ (1)	
	$\lambda = 2.2 \times 10^{-11} (\mathrm{m}) \tag{1}$	
	Or	
	Use of $E_k = eV$ and $E_k = \frac{1}{2}mv^2$ (1)	
	Use of $\lambda = \frac{h}{n}$ (1)	
	$\lambda = 2.2 \times 10^{-11} (\mathrm{m}) \tag{1}$	
	Example of calculation	
	$v = \sqrt{\frac{2 \times 3000 \text{ V} \times 1.6 \times 10^{-19} \text{ C}}{9.11 \times 10^{-31} \text{ kg}}} = 3.2 \times 10^7 \text{ m s}^{-1}$	
	$\lambda = \frac{6.63 \times 10^{-34} \text{J s}}{9.11 \times 10^{-31} \text{kg} \times 3.2 \times 10^{7} \text{m s}^{-1}} = 2.24 \times 10^{-11} \text{m}$	3
1(b)	Compares λ to atomic gap spacing and makes comment consistent	
	with their answer to (a) (1)	
		1
	Total for question	4

Question	Answer		Mark
Number			
2(a)	Divide by 1.6×10^{-19}	(1)	
	$V = 4.5 \times 10^{6} \text{ V}$	(1)	
	Example of calculation		
	7.2×10^{-13} [
	$V = \frac{1}{1.6 \times 10^{-19} \text{ C}} = 4.5 \times 10^{6} \text{ V}$		
	1.0 × 10 C		2
2(b)	Line of best fit drawn with maximum speed $<3 \times 10^8$	(1)	
	Comment that line tends towards c		
	Or comments that the graph levels off close to c.	(1)	
		. ,	2
2(c)	The idea that as electrons travel at speeds close to the speed of light their mass		
	increases	(1)	
	$E_{\rm k} = \frac{1}{2}mv^2$ does not apply		
	\mathbf{r}_{2} \mathbf{r}_{2} \mathbf{r}_{2} \mathbf{r}_{2}	(4)	
	Or relativistic equations should be used.	(1)	2
) (J)(=)	The time arout in each take must remain exact at (as the end of the second in the seco	(1)	
2(a)(1)	The time spent in each tube must remain constant (as the speed increases)	(1)	
	Refers to the tubes switching polarity at fixed time intervals	(1)	
	(Exp MD2 instancian formula is something in a fifth in the formula is the formula		
	(For MP2 just saying frequency is constant is not sufficient)		•
2(4)(**)	The gread of clostrong has become a merily surface to the		4
2(a)(l)	The speed of electrons has become a maximum/constant	(1)	
	Or there can be no further increase in the speed of the electrons	(1)	
	(do not accept there is no acceleration)		
			4
			1
	Total for question		9

Question Number	Answer	Mark
3 (a)	The idea that electron(s) have been removed/added from an atom/molecule/particle. (1)	1
3(b)	Flemings left hand (rule) Or FLHR (1)	1
3(c)	Max 5Only charged particles leave a trail so photon is neutral(1)Or the two particles produced are charged because they leave a track(1)	
	Particles are oppositely charged because they curve/spiral in (1) opposite directions	
	Or Particles are oppositely charged to conserve charge (1) (Applying FLHR), top particle is positive and bottom one	
	(1)	
	spirals Or because the paths have identical shape (1)	
	Particles have the same momentum (1)	5
	The photon enters from the left because the (resultant) momentum afterwards is to the right.	
	Total for question	7

Question	Answer		Mark
Number			Murk
4	Diagram:		
•	Path curves in opposite sense	1)	
		•)	
	With a greater radius of curvature	1)	
	For Mn2 drawn line must start at X unwards at less than 45°	1)	
	to vertical and go above printed line. Look at curvature close to		
	V do not populico if later it ourves more/loss l		
	A, do not penanse il later il cuives more/less.]		
	×		
	Explanation: (these marks are independent of the diagram)		
	(Antihelium) has opposite charge (to proton)		
	Or reference to proton +ve and antihelium -ve		
		1)	
	See $r = p/BQ$		
		1)	
	r is doubled Or p/Q is doubled		
		1)	5
	[equation may appear near diagram.]		
	Total for question		5

Question Number	Answer	Mark
5(a)(i)	Straight through, zero deflection, direction fired in.(Do not accept 'through' or 'directly behind' on its own)(1)	1
5(a)(ii)	(Atom consists) mainly/mostly of empty spaceOrVolume of atom very much greater than volume of nucleus.(do not credit if part of a list)	1
5(b)	Most of the mass is in the nucleus/centre(1)[it is not enough to say that the nucleus is dense/concentrated. Looking for idea that nearly all of the atom's mass is in the nucleus](1)Nucleus/centre is charged [ignore references to the charge being positive. Just saying the 	2
5(c)(i) E	Electrostatic/electromagnetic/electric/coulomb (1)	
5(c)(ii)	Arrow starting on the path at closest point to the nucleus(1)Arrow pointing radially away from nucleus(1)(correct direction starting on the nucleus scores 2 nd mark only)(1)	2
5(c)(iii)	Deflection starts earlier(1)Final deflection is greater(1)(paths should diverge)(1)	2
	Total for question	9

Question	Answer	Mark
Number		
6	Considers momentum (1)	
	Calculates momentum of xenon or spacecraft(1)Calculates a second momentum Or calculates speed of spacecraft(1)A statement that the prediction is correct Or a statement that the increase is (about) 8ms ⁻¹ (only award this mark if based on correct calculations)(1)	4
	(Calculation to find the speed of the Xenon or either mass scores max 3)	
	Example of calculation Momentum of Xenon = $0.13 \text{ kg} \times 30000 \text{ m s}^{-1} = 3900 \text{ kg m s}^{-1}$ Momentum of spacecraft = $486 \text{ kg} \times 8 \text{ m s}^{-1} = 3888 \text{ kg m s}^{-1}$ Or Momentum of Xenon = $0.13 \text{ kg} \times 30000 \text{ m s}^{-1} = 3900 \text{ kg m s}^{-1}$ Momentum of spacecraft = $486 \text{ kg} \times v$ $v = 3900 \text{ kg m s}^{-1} / 486 \text{ kg} = 8.02 \text{ m s}^{-1}$	
	Total for question	4

Question	Answer	Mark
Number 7	(QWC - Work must be clear and organised in a logical manner usingtechnical wording where appropriate)Max5Max5Electric fields• can be used to accelerate/deflect particles(1)• direction of force/deflection indicates (sign of) charge.(1)• $a = EQ/m$ Magnetic fields • produce circular motion Or provides a centripetal force Or causes spirals/arc(1)	
	• Direction of force/curvature/deflection indicates (sign of) charge. (1) • momentum/speed/mass found from radius/curvature (1) • $r = p/BQ$ Or $Bqv = mv^2/r$ (1)	5
	Total for question	5

Question	Answer		Mark
Number			
8(a)	Disc/metal/cathode is heated (by a current)	(1)	_
	Thermionic emission	(1)	2
	(allow use of extremely high pd and a vacuum for 2 marks)	(1)	
8(b)	See $F = mv_{(v)}/t$ Or $F = ma$ and $v_{(v)} = at$	(1)	
	See $F = eE$ (accept $F = EQ$) See (times in field is) $f = I(t)$	(1)	2
	See (time in field is) $t = l/v$ (This needs to be three clear statements)	(1)	3
	(This needs to be three clear statements) (Do not credit a units method)		
	(Do not creat a units method)		
8(c)	Find/measure horizontal distance from plates to screen	(1)	
- (-)	Find/measure vertical displacement from centre of screen	(1)	
	Use $\tan \theta$	(1)	3
	(this mark can be awarded if velocities are used rather than distances)		
8(d)	Tan θ = vertical velocity / horizontal velocity Or v_v/v	(1)	
	$v = \frac{Ee}{2} \times \frac{l}{2}$ and $v_{\rm H} = v$ (conditional mark)		
	$m = v$ and $v_{\rm H} = v$ (conditional mark)	(1)	2
	(Do not credit a units method)		
	(Do not creat a units method)		
8(e)(i)	Magnetic rather than electric force		
- (- / ()	Or <i>Bev/BQv</i> is the magnetic force		
	Or $F = Bev/BqV$	(1)	1
	(do not credit just $eE = Bev$)		
8(e)(ii)	Mark for appreciation of magnetic force e.g.		
	Forestantian new contrincts		
	Porce/acceleration now centripetal		
	Or force/acceleration not vertical		
	Or force/acceleration is not always in the same direction		
	Or vertical force/acceleration not constant		
	Or force/acceleration is at right angles to direction of motion.	(1)	
		(-)	
	Mark for consequence		
	Horizontal velocity no longer constant		
	Or $l/v = t$ not true	(1)	2
			12
	Total for question		13

Question Number	Answer	Mark
9 (a)	Identifying the equations $E_k = p^2 / 2m$ and $\lambda = h/p$ OR $\lambda = h/p, p = mv$ and $E_k = \frac{1}{2} mv^2$ (1) Any combination or rearrangement (conditional mark) (1) (do not give 2 nd mark just for quoting equation given in question) (Do not credit a reverse argument i.e. starting with the given equation.) <u>Example of derivation</u> $p = 2mE_k$ $\lambda = h/\sqrt{(2mE_k)}$	2
9(b)	Correct sub of h^2 and m (1) Use of $E_k = eV$ (1) $\lambda = 2.5 \times 10^{-11} \text{ m}$ (1) OR Use of $E_k = \frac{1}{2} mv^2$ (to find $v = 3.0 \times 10^7 \text{ (m s}^{-1})$) (1) Use of $\lambda = h/p$ with correct substitution for h and m (1) $\lambda = 2.5 \times 10^{-11} \text{ m}$ (1) Example of calculation $\lambda = \sqrt{\frac{(6.63 \times 10^{-34} \text{ J s})^2}{2(9.11 \times 10^{-31} \text{ kg})(2500 \text{ V})(1.6 \times 10^{-19} \text{ C})}}$ $\lambda = 2.46 \times 10^{-11} \text{ m}$ OR $v = \sqrt{\frac{2(2500 \text{ V})(1.6 \times 10^{-19} \text{ C})}{9.1 \times 10^{-31} \text{ kg}}} = 3.0 \times 10^7$ $\lambda = 6.63 \times 10^{-34} \text{ J s / } (9.1 \times 10^{-31} \text{ kg})(3.0 \times 10^7 \text{ m s}^{-1})}$	3
	Total for question	5